( * ) [Sos.S] | |
( * ) [Polynomial.S] | |
( * ) [Matrix.S] | Same as mult. |
( * ) [Lmi.S] | |
( * ) [Scalar.S] | |
( ** ) [Sos.S] | |
( ** ) [Polynomial.S] | |
( ** ) [Matrix.S] | Same as power. |
( ** ) [Lmi.S] | |
( *. ) [Sos.S] | |
( *. ) [Polynomial.S] | |
( *. ) [Matrix.S] | Same as mult_scalar. |
( *. ) [Lmi.S] | |
(!!) [Sos.S] | |
(!!) [Lmi.S] | |
(!) [Sos.S] | |
(!) [Polynomial.S] | |
(!) [Lmi.S] | |
(+) [Sos.S] | |
(+) [Polynomial.S] | |
(+) [Matrix.S] | Same as add. |
(+) [Lmi.S] | |
(+) [Scalar.S] | |
(-) [Sos.S] | |
(-) [Polynomial.S] | |
(-) [Matrix.S] | Same as sub. |
(-) [Lmi.S] | |
(-) [Scalar.S] | |
(/) [Sos.S] | |
(/) [Polynomial.S] |
|
(/) [Scalar.S] | |
(/.) [Sos.S] | |
(/.) [Polynomial.S] |
|
(<) [Scalar.S] | |
(<=) [Sos.S] |
|
(<=) [Lmi.S] |
|
(<=) [Scalar.S] | |
(<>) [Scalar.S] | |
(=) [Scalar.S] | |
(>) [Scalar.S] | |
(>=) [Sos.S] |
|
(>=) [Lmi.S] |
|
(>=) [Scalar.S] | |
(~-) [Sos.S] | |
(~-) [Polynomial.S] | Unary minus, |
(~-) [Matrix.S] | Same as minus. |
(~-) [Lmi.S] | |
(~-) [Scalar.S] | |
(~:) [Matrix.S] | Same as transpose. |
(~:) [Lmi.S] | |
?? [Sos.S] | |
?? [Polynomial.S] | |
A | |
add [Sos.S] | |
add [Scalar.M] | |
add [Polynomial.S] | |
add [Matrix.S] | Matrix addition. |
add [Lmi.S] | |
add [LinExpr.S] | |
B | |
block [Matrix.S] |
|
block [Lmi.S] | |
block_diag_of_sparse [Sdp] | |
block_diag_to_sparse [Sdp] | |
C | |
check [Sos.S] | If |
check [Posdef] | Takes as input a square matrix of Q.t of size nxn and returns 1 if it manages to prove that the matrix is symmetric positive definite and 0 otherwise (i.e. |
check [Lmi.S] | If |
check_PSD [Posdef] | Same as |
check_complete [Posdef] | Same as |
check_itv [Posdef] | Takes as input a square interval matrix |
check_round [Sos.S] | TODO: doc ( |
choose [LinExpr.S] | Returns one of the (non zero) coefficients in the linear expression (if any). |
compare [Scalar.M] | |
compare [Polynomial.S] | |
compare [Monomial] | |
compare [Ident] | |
compare [LinExpr.S] | |
compose [Sos.S] | |
compose [Polynomial.S] |
|
const [Sos.S] | |
const [Polynomial.S] |
|
const [Lmi.S] | |
const [LinExpr.S] | Same as |
create [Ident] | Create a new unique identificator. |
D | |
default [Sos.S] | Default values above. |
default [Sdpa] | Default values above. |
default [Sdp] | Default values above. |
default [Moseksdp] | Default values above. |
default [Lmi.S] | Default values above. |
default [Csdp] | Default values above. |
degree [Sos.S] | |
degree [Polynomial.S] | -1 for the null polynomial. |
degree [Monomial] | |
degree_list [Polynomial.S] |
|
derive [Sos.S] | |
derive [Polynomial.S] |
|
derive [Monomial] |
|
div [Scalar.M] | |
div [Monomial] |
|
divide [Monomial] |
|
E | |
empty_values [Lmi.S] |
|
equal [Scalar.S] | |
eval [Polynomial.S] |
|
eye [Matrix.S] |
|
eye [Lmi.S] | |
F | |
filter [NewtonPolytope] |
|
float_of_q [Utils] |
|
fold [Polynomial.S] | |
G | |
gauss_split [Matrix.S] |
|
gcd [Monomial] |
|
geq [Scalar.S] | |
gt [Scalar.S] | |
I | |
inv [Scalar.S] | |
is_const [Polynomial.S] |
|
is_const [LinExpr.S] | |
is_homogeneous [Sos.S] | |
is_homogeneous [Polynomial.S] | |
is_monomial [Polynomial.S] |
|
is_success [SdpRet] |
|
is_symmetric [Matrix.S] | |
is_symmetric [Lmi.S] | |
is_var [Polynomial.S] |
|
is_var [Monomial] |
|
is_var [LinExpr.S] | |
itv_float_of_q [Utils] |
|
K | |
kron [Matrix.S] |
|
kron [Lmi.S] | |
kron_sym [Matrix.S] |
|
kron_sym [Lmi.S] | |
L | |
lcm [Monomial] |
|
leq [Scalar.S] | |
lift_block [Matrix.S] |
|
lift_block [Lmi.S] | |
list_eq [Monomial] |
|
list_le [Monomial] |
|
lt [Scalar.S] | |
M | |
make [Sos.S] |
|
map [Utils] | tail-recursive version of |
matrix_of_sparse [Sdp] | |
matrix_to_sparse [Sdp] | |
merge [Polynomial.S] | |
minus [Matrix.S] | Unary minus. |
minus [Lmi.S] | |
minus_one [Scalar.S] | |
monomial [Sos.S] | |
monomial [Polynomial.S] |
|
mult [Sos.S] | |
mult [Scalar.M] | |
mult [Polynomial.S] | |
mult [Monomial] |
|
mult [Matrix.S] | Matrix multiplication. |
mult [Lmi.S] | |
mult_scalar [Sos.S] | |
mult_scalar [Polynomial.S] | |
mult_scalar [Matrix.S] |
|
mult_scalar [LinExpr.S] | |
N | |
nb_cols [Matrix.S] | |
nb_cols [Lmi.S] | |
nb_lines [Matrix.S] | |
nb_lines [Lmi.S] | |
nb_vars [Sos.S] | |
nb_vars [Polynomial.S] |
|
nb_vars [Monomial] |
|
neg [Scalar.S] | |
O | |
of_array_array [Matrix.S] |
|
of_float [Scalar.M] | |
of_int [Scalar.S] | |
of_list [Sos.S] | |
of_list [Polynomial.S] |
|
of_list [Monomial] |
|
of_list [LinExpr.S] |
|
of_list_list [Matrix.S] |
|
of_q [Scalar.M] | |
one [Scalar.M] | |
one [Polynomial.S] | |
one [Monomial] | Equivalent to |
P | |
param_vars [Sos.S] |
|
pfeas_stop_crit [Sdp] |
|
power [Sos.S] | |
power [Polynomial.S] |
|
power [Matrix.S] |
|
power [Lmi.S] | |
pp [Sos.S] | Printer for polynomial expressions. |
pp [SdpRet] | |
pp [Sdp] | |
pp [Scalar.M] | |
pp [Polynomial.S] | |
pp [Monomial] | Pretty printing. |
pp [Matrix.S] | |
pp [Lmi.S] | Printer for LMI. |
pp [Ident] | |
pp [LinExpr.S] | |
pp_array [Utils] | |
pp_block_diag [Sdp] | |
pp_bounds [Sdp] | |
pp_constr [Sdp] | |
pp_constr_ext [Sdp] | |
pp_constr_ext [PreSdp.S] | |
pp_constr_ext [Dualize.S] | |
pp_ext [Sdp] | |
pp_ext_sedumi [Sdp] | |
pp_ext_sparse [Sdp] | |
pp_ext_sparse [PreSdp.S] | |
pp_ext_sparse [Dualize.S] | |
pp_ext_sparse_sedumi [Sdp] | |
pp_list [Utils] | |
pp_matrix [Utils] | |
pp_matrix [Sdp] | |
pp_names [Sos.S] | See Monomial.pp_names for details about
|
pp_names [Polynomial.S] | See Monomial.pp for details about
|
pp_names [Monomial] | Pretty printing. |
pp_obj [Sdp] | |
pp_obj_ext [Sdp] | |
pp_obj_ext [PreSdp.S] | |
pp_obj_ext [Dualize.S] | |
pp_sparse [Sdp] | |
pp_sparse_matrix [Sdp] | |
pp_values [Lmi.S] | Printer for environment values computed by solver. |
pp_vector [Sdp] | |
profile [Utils] |
|
R | |
register_value [Lmi.S] | Register a scalar value in value environement |
remove [LinExpr.S] | |
remove_0_row_cols [Matrix.S] | Returns the same matrix, without its rows and columns containing only 0. |
replace [LinExpr.S] |
|
S | |
scalar [Sos.S] | |
scalar [Lmi.S] |
|
sdp_default [Sdp_default] | |
setround_tonearest [Utils] | |
sign [Scalar.S] | Returns -1, 0 or 1 when its argument is respectively < 0, 0 or > 0. |
solve [Sos.S] |
|
solve [Sdpa] |
|
solve [Sdp] | Same as |
solve [Moseksdp] |
|
solve [Lmi.S] |
|
solve [Csdp] |
|
solve_ext [Sdp] | Same as |
solve_ext [Moseksdp] |
|
solve_ext_sparse [Sdp] |
|
solve_ext_sparse [PreSdp.S] | See Sdp.solve_ext_sparse for details. |
solve_ext_sparse [Dualize.S] | See Sdp.solve_ext_sparse for details. |
solve_ext_sparse_details [Dualize.S] | |
solve_sparse [Sdp] |
|
string_of_float_bin [Posdef] | |
sub [Sos.S] | |
sub [Scalar.M] | |
sub [Polynomial.S] | |
sub [Matrix.S] | Matrix subtraction. |
sub [Lmi.S] | |
sub [LinExpr.S] | |
T | |
to_array_array [Matrix.S] | The returned array is a copy that can be freely modified by the user. |
to_float [Scalar.M] | |
to_list [Sos.S] | Returns a list sorted in increasing order of Monomial.compare without duplicates. |
to_list [Polynomial.S] | Returns a list sorted in increasing order of Monomial.compare without duplicates nor zeros. |
to_list [Monomial] | The returned list contains only non negative values and its last element is non zero (or the list is empty). |
to_list [LinExpr.S] | Returns a list sorted in increasing order of Ident.compare without duplicates nor zeros. |
to_list_list [Matrix.S] | |
to_q [Scalar.M] | |
transpose [Matrix.S] | Matrix transposition. |
transpose [Lmi.S] | |
V | |
value [Sos.S] |
|
value [Lmi.S] |
|
value_mat [Lmi.S] |
|
value_poly [Sos.S] |
|
var [Polynomial.S] |
|
var [Monomial] |
|
var [Lmi.S] |
|
var [LinExpr.S] | Same as |
var_var [Lmi.S] | TODO: renamed (to discuss: this breaks the interface) |
Z | |
zero [Scalar.M] | |
zero [Polynomial.S] | |
zeros [Matrix.S] |
|
zeros [Lmi.S] |